Part Number Hot Search : 
TM9128 VAL1Z DT54FC 1N5529 71308 ZXTP19 EN1TF1 BBXXXXX
Product Description
Full Text Search
 

To Download MAX9002EUAT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  for free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. for small orders, phone 408-737-7600 ext. 3468. ge ne ra l de sc ript ion the max9000 family features the combination of a hi gh- speed operational amplifier, a 185ns comparator, an d a precision 1.230v reference. these devices operate f rom a single +2.5v to +5.5v supply and draw less than 500 a of quiescent current. the max9001/max9004 feature a sh ut- down mode that reduces supply current to 2a and pu ts the outputs into a high-impedance state, making the m ideal for portable and battery-powered applications . the amplifiers in the max9000/max9001/max9002 are unity-gain stable with a 1.25mhz gain-bandwidth pro duct, while the amplifiers in the max9003/max9004/max9005 are stable for closed-loop gains of +10v/v or great er with an 8mhz gain-bandwidth product. the input common- mode voltage extends from 150mv below the negative supply to within 1.2v of the positive supply for th e amplifi- er, and to within 1.1v for the comparator. the ampl ifier and comparator outputs can swing rail-to-rail ? and deliver up to 2.5ma and 4.0ma, respectively, to an external load while maintaining excellent dc accuracy. the unique design of the comparator output stage substantially reduces switching current during output transitions , virtually eliminating power-supply glitches. the comparators 2mv of built-in hysteresis provid es noise immunity and prevents oscillations even with a slow-moving input signal. the max9000/max9001/ max9003/max9004 have an internal 1.230v 1% preci- sion reference with a low 8ppm/c temperature coeff i- cient that can sink or source up to 1ma. the amplif ier and reference are stable with capacitive loads up to 25 0pf and 100nf, respectively. the comparators inverting input is internally connected to the reference output in the max9000/max9003. ________________________applic a t ions single-supply zero- photodiode preamps crossing detector smart card readers instruments, terminals, infrared receivers and bar-code readers for remote controls keyless entry sensor signal detection fe a t ure s ? op amp + comparator + reference in space-saving max package ? +2.5v to +5.5v single-supply voltage range ? 340a supply current (max9002/max9005) ? unity-gain stable (gbw = 1.25mhz) and decompensated (a v 3 10v/v, gbw = 8mhz) options ? op-amp/comparator outputs swing rail-to-rail ? ground-sensing inputs for both op amp andcomparator ? op amp stable with capacitive loads up to 250pf ? internal 2mv comparator hysteresis ? fast 185ns propagation-delay comparator ? no phase reversal for overdriven inputs(both op amp and comparator) ? internal 1.230v precision reference (max9000/max9001/max9003/max9004) 1% initial accuracylow 8ppm/c temperature drift sink or source up to 1ma stable for capacitive loads up to 100nf m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs ________________________________________________________________ maxim integrated products 1 19-0499; rev 1; 7/98 part max9000 eua max9000esa -40c to +85c -40c to +85c temp. range pin-package 8 max 8 so orde ring i nform a t ion ordering information continued at end of data sheet. rail-to-rail is a registered trademark of nippon mo torola, ltd. pin configurations and typical operating circuit appear at end of data sheet. internal precision reference pin-package max9000 yes 8 so/max max9001 yes 10 max, 14 so part max9002 no 8 so/max op-amp gain stability (v/v) 1 1 1 max9003 yes 8 so/max max9004 yes 10 max, 14 so max9005 no 8 so/max 10 10 10 shutdown no yes no no yes no op-amp gain bandwidth (mhz) 1.25 1.25 1.25 8 8 8 ___________________________________________________ ___________________________ se le c t or guide max9001 eub max9001esd -40c to +85c -40c to +85c 10 max 14 so downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 2 _______________________________________________________________________________________ absolute maximum ratings electrical characteristics (v dd = +2.5v to +5.5v, v ss = 0, shdn = v dd (max9001/max9004 only), v cm(op amp) = 0, v aout = v dd / 2, v cm(comp) = 0 (for max9001/max9002/max9004/max9005), cout = low, i out(ref) = 0, t a = t min to t max , unless otherwise noted. typical values are at v dd = 5v and t a = +25c.) stresses beyond those listed under absolute maximu m ratings may cause permanent damage to the device . these are stress ratings only, and functional operation of the device at these or any other condi tions beyond those indicated in the operational sec tions of the specifications is not implied. exposur e to absolute maximum rating conditions for extended per iods may affect device reliability. supply voltage (v dd to v ss ) ....................................-0.3v to +6v voltage inputs (ain_, cin_).............(v ss - 0.3v) to (v dd + 0.3v) output short-circuit duration (aout, cout, ref) ...c ontinuous to either v ss or v dd continuous power dissipation (t a = +70 c) 8-pin so (derate 5.88mw/c above +70 c) .................471mw 8-pin max (derate 4.1mw/c above +70 c) ..............330mw 10-pin max (derate 5.6mw/c above +70 c) ............444mw 14-pin so (derate 8.3mw/c above +70 c) .................667mw operating temperature range max900_e _ _....................................... ............-40c to +85c maximum junction temperature ....................... ..............+150c storage temperature range .......................... ...-65c to +160c lead temperature (soldering, 10sec) ................ .............+300c v shdn (0.3v x v dd ), v aout = 0 to v dd shorted to v dd shorted to v ss max9000/max9001/ max9003/max9004 a v = 1v/v v dd = 2.5v to 5.5v max900_es_, (v ss - 0.15v) v cm (v dd - 1.2v), v dd = 5.5v guaranteed by psrr tests guaranteed by cmrr test differential or common mode max900_es_ ain+, ain- ain+, ain- max9002/max9005 max9001/max9004 (v shdn = 0) max900_es_ conditions a 0.01 1 i out (disabled) disabled mode output leakage ma 65 output short-circuit current 10 0.01 output resistance db 74 100 psrr power-supply rejection ratio db cmrr common-mode rejection ratio 72 96 v -0.15 v dd - 1.2 cmvr input common-mode voltage range m 1000 r in input resistance na 0.02 1 input offset current na 0.05 2 i bias input bias current v/c tcv os input offset voltage temperature coefficient 1 a 450 550 410 500 v 2.5 5.5 v dd supply voltage range v os input offset voltage mv 0.5 1.5 v 0.3 x v dd v il( shdn ) shutdown logic low 340 425 a 375 475 i dd supply current a 2 5 i shdn supply current in shutdown v 0.7 x v dd v ih( shdn ) shutdown logic high units min typ max symbol parameter v dd = 3v v dd = 5v v dd = 3v v dd = 5v max9001/max9004 (v shdn = 0 to v dd ) a 1 2.5 i in( shdn ) shutdown input bias current op amp downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs _______________________________________________________________________________________ 3 f = 10khz f = 10khz v ain+ - v ain- 3 10mv v dd = 5.5v v dd = 2.5v conditions fa/ hz 1 i noise input noise current density nv/ hz 36 v noise input noise voltage density pf 2.5 c in input capacitance 140 250 1 5 1 5 94 125 db 86 106 a vol large-signal voltage gain 84 115 94 120 units min typ max symbol parameter electrical characteristics (continued) (v dd = +2.5v to +5.5v, v ss = 0, shdn = v dd (max9001/max9004 only), v cm(op amp) = 0, v aout = v dd / 2, v cm(comp) = 0 (for max9001/max9002/max9004/max9005), cout = low, i out(ref) = 0, t a = t min to t max , unless otherwise noted. typical values are at v dd = 5v and t a = +25c.) max9003/max9004/max9005 max9000/max9001/max9002 mhz 8 gbw gain-bandwidth product 1.25 mv 60 100 v ol / v oh output voltage swing 0.009 max9000/max9001/max9002 max9000/max9001/max9002 db 30 degrees 75 s 2 power-on time s 2 enable delay time s 0.2 shutdown delay time max9000/max9001/max9002 (a v = 1v/v) 250 v aout = 0.05v to 2.45v, r l = 100k v aout = 0.2v to 2.3v, r l = 1k v aout = 0.05v to 5.4v, r l = 100k v aout = 0.25v to 5.2v, r l = 1k v dd - v oh v ol v dd - v oh v ol max9000/max9001/ max9002 (a v = 1v/v) f = 10khz, v aout = 2vp-p, v dd = 5v % 0.028 thd+n total harmonic distortion plus noise max9003/max9004/ max9005 (a v = 10v/v) v dd = 5v, v aout = 4v step s 6.9 2.1 settling time to within 0.01% max9000/max9001/ max9002 (a v = 1v/v) max9003/max9004/ max9005 (a v = 10v/v) max9003/max9004/max9005 (a v = 10v/v) pf 250 c load capacitive-load stability v/c tcv os input offset voltage temperature coefficient max900_es_ 1 mv input-referred hysteresis v dd = 5v (notes 2, 3) 4 7 r l = 100k r l = 1k max9003/max9004/max9005 80 phase margin max9003/max9004/max9005 40 gain margin mv v os input offset voltage max900_es_ (notes 1, 2) 1 2 v dd = 5v, v aout = 4v step v/s 0.85 6.0 sr slew rate max9000/max9001/ max9002 (a v = 1v/v) max9003/max9004/ max9005 (a v = 10v/v) comparator downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 4 _______________________________________________________________________________________ v dd = 5v, r l = 10k , c l = 15pf (note 5) v od = 25mv, r l = 10k , c l = 15pf (note 4) v shdn (0.3v x v dd ), v cout = 0 to v dd max9001/max9002/max9004/max9005, 0.15v v cm (v dd - 1.1v), v dd = 5.5v (v cin+ - v cin- ) 3 20mv v dd = 2.5v to 5.5v conditions ns 100 power-on time ns 100 enable delay time ns 100 shutdown delay time ns 10 t r , t f rise/fall time ns 185 t pd+ , t pd- propagation delay a 0.01 1 i out (disabled) disabled mode output leakage ma 55 output short-circuit current mv 400 v ol /v oh output voltage swing 5 na 8 80 i bias input bias current 400 5 db 72 100 cmrr common-mode rejection ratio db 72 100 psrr power-supply rejection ratio units min typ max symbol parameter note 1: comparator input offset is defined as the center of the input-referred hysteresis zone. note 2: measured at v cm(comp) = 0 for the max9001/max9002/max9004/max9005; or v cm(comp) = v ref for the max9000/max9003. note 3: input-referred hysteresis is defined as the differe nce of the trip points required to change comparato r output states. note 4: v od is the overdrive that is beyond the offset and hyst eresis-determined trip points. note 5: rise and fall times are measured between 10% and 90 % at cout. electrical characteristics (continued) (v dd = +2.5v to +5.5v, v ss = 0, shdn = v dd (max9001/max9004 only), v cm(op amp) = 0, v aout = v dd / 2, v cm(comp) = 0 (for max9001/max9002/max9004/max9005), cout = low, i out(ref) = 0, t a = t min to t max , unless otherwise noted. typical values are at v dd = 5v and t a = +25c.) shorted to v dd shorted to v ss v dd = 5v, i out = 0 to 1ma v dd = 2.5v to 5.5v max900_es_, v dd = 5v, t a = +25c ma 10 6 output short-circuit current 0.15 0.8 v/v 20 250 line regulation ppm/c 8 tcv ref output voltage temperature coefficient v v ref output voltage 1.218 1.230 1.242 mv/ma 0.6 2.0 load regulation 0.1hz to 10hz v shdn (0.3v x v dd ), v ref = 0 to v dd vp-p 20 output noise a 0.01 1 disabled mode output leakage r l = 100k to v ss , v ref within 1% s 16 enable delay time s 1 shutdown delay time r l = 100k to v ss , v ref within 1% nf 0 to 100 capacitive load stability s 16 power-on time v dd - v oh i source = 10a i source = 4ma i sink = 10a i sink = 4ma v ol sourcing sinking mv/ma guaranteed by cmrr test v v ss - v dd - 0.15 1.1 v cm common-mode voltage range voltage reference (max9000/max9001/max9003/max9004) input offset current i os max9001/max9002/max9004/max9005 2 15 na downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs _______________________________________________________________________________________ 5 200 300 250 400 350 450 500 2.5 3.5 4.0 3.0 4.5 5.0 5.5 supply current vs. supply voltage max9000 toc01 supply voltage (v) supply current ( m a) max9000/max9001/max9003/max9004 max9002/max9005 0 1.0 0.5 2.0 1.5 3.0 2.5 3.5 2.5 3.5 4.0 3.0 4.5 5.0 5.5 shutdown supply current vs. supply voltage max9000 toc02 supply voltage (v) shutdown supply current ( m a) 0 0.5 1.5 1.0 2.0 2.5 2.5 3.5 3.0 4.0 4.5 5.0 5.5 shutdown logic threshold vs. supply voltage max9000 toc03 supply voltage (v) shutdown logic threshold (v) 300 400 350 450 500 -40 0 -20 20 40 60 80 100 m ax9000/m ax9001/m ax9003/m ax9004 supply current vs. tem perature max9000 toc04 temperature (c) supply current ( m a) v dd = 5.5v v dd = 2.5v 300 400 350 450 500 -40 0 -20 20 40 60 80 100 m ax9002/m ax9005 supply current vs. tem perature max9000 toc07 temperature (c) supply current ( m a) v dd = 5.5v v dd = 2.5v 0 1.5 1.0 0.5 2.5 2.0 4.5 4.0 3.5 3.0 5.0 -40 -20 0 20 40 60 80 100 shutdown supply current vs. tem perature max9000 toc05 temperature (c) shutdown supply current ( m a) v dd = 5.5v v dd = 2.5v 1.90 1.92 1.96 1.94 1.98 2.00 -40 0 -20 20 40 60 80 100 shutdown logic threshold vs. tem perature max9000 toc06 temperature (c) shutdown logic threshold (v) 0 100 50 250 200 150 400 350 300 450 0 2 1 3 4 5 6 op-am p output voltage swing high (v oh ) vs. source current max9000 toc08 source current (ma) v dd - v oh (mv) t a = +85c t a = +25c t a = -40c 0 300 200 100 400 500 600 0 86 2 4 10 12 14 16 18 20 op-am p output voltage swing low (v ol ) vs. sink current max9000 toc09 sink current (ma) v ol (mv) t a = +85c t a = +25c t a = -40c __________________________________________typic a l o pe ra t ing cha ra c t e rist ic s (v dd = +5v, v ss = 0, v cm (op amp) = 0, shdn = v dd , cout = low, r l = , t a = +25c, unless otherwise noted.) downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 6 _______________________________________________________________________________________ ____________________________________t ypic a l ope ra t ing cha ra c t e rist ic s (c ont inue d) (v dd = +5v, v ss = 0, v cm (op amp) = 0, shdn = v dd , cout = low, r l = , t a = +25c, unless otherwise noted.) -30 -10 -20 10 0 20 30 2.5 3.5 4.0 3.0 4.5 5.0 5.5 change in op-am p offset voltage (v os ) vs. supply voltage max9000 toc10 supply voltage (v) change in v os ( m v) -150 -100 0 -50 50 100 -40 0 -20 20 40 60 80 100 change in op-am p offset voltage (v os ) vs. tem perature max9000 toc11 temperature (c) change in v os ( m v) 84 86 85 88 87 91 90 89 92 -40 0 -20 20 40 60 80 100 op-am p com m on-m ode rejection ratio vs. tem perature max9000 toc12 temperature (c) cmrr (db) 80 100 90 120 110 130 140 0 200 300 100 400 500 600 op-am p large-signal gain vs. output voltage max9000 toc13 output voltage from either supply (mv) gain (db) r l = 2k w r l = 10k w v dd = 5.5v r l to gnd r l = 100k w 80 100 90 120 110 130 140 0 200 300 100 400 500 600 op-am p large-signal gain vs. output voltage max9000 toc16 output voltage from either supply (mv) gain (db) r l = 2k w r l = 10k w v dd = 5.5v r l to v dd r l = 100k w 80 100 90 120 110 130 140 0 200 300 100 400 500 600 op-am p large-signal gain vs. output voltage max9000 toc14 output voltage from either supply (mv) gain (db) v dd = 2.5v r l to gnd r l = 100k w r l = 10k w r l = 2k w 80 100 90 120 110 130 140 -40 0 20 -20 40 60 80 100 op-am p large-signal gain vs. tem perature max9000 toc15 temperature (c) gain (db) v dd = 5.5v r l to v dd /2 v out swing = 0.2v to 5.3v r l = 100k w r l = 10k w r l = 1k w 100 120 110 130 140 0 200 300 100 400 500 600 op-am p large-signal gain vs. output voltage max9000 toc17 output voltage from either supply (mv) gain (db) r l = 2k w r l = 10k w v dd = 2.7v r l to v dd r l = 100k w 80 100 90 120 110 130 140 -40 0 20 -20 40 60 80 100 op-am p large-signal gain vs. tem perature max9000 toc18 temperature (c) gain (db) v dd = 2.5v r l to v dd /2 v out swing = 0.2v to 2.3v r l = 100k w r l = 10k w r l = 1k w downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs _______________________________________________________________________________________ 7 60 -40 100 10m 10k 1m 100k 1k m ax9000/m ax9001/m ax9002 op-am p gain and phase vs. frequency (no load) 0 -20 40 20 max9000 toc 19 frequency (hz) gain (db) 180 -180 -36 -72 -108 -144 108 72 144 36 0 phase (degrees) gain a v = +1000 no load phase 60 -40 100 10m 10k 1m 100k 1k m ax9000/m ax9001/m ax9002 op-am p gain and phase vs. frequency (with c load ) 0 -20 40 20 max9000 toc20 frequency (hz) gain (db) 180 -180 -36 -72 -108 -144 108 72 144 36 0 phase (degrees) a v = +1000 c l = 270pf gain phase 0 -100 100 1k 10k 100k 1m 10m m ax9000/m ax9001/m ax9002 op-am p power-supply rejection vs. frequency -80 max9000 toc21 frequency (hz) power-supply rejection (db) -60 -40 -20 a v = +1 no load 60 -40 100 1k 10k 100k 1m 10m m ax9003/m ax9004/m ax9005 op-am p gain and phase vs. frequency (no load) -20 max9000 toc22 frequency (hz) gain (db) 0 20 40 180 -180 -36 -72 -108 -144 108 72 144 36 0 phase (degrees) a v = +1000 no load gain phase 0 10 20 30 40 50 0 400 500 200 300 100 600 700 800 900 1000 m ax9000/m ax9001/m ax9002 op-am p percent overshoot vs. load capacitance max9000 toc25 c load (pf) overshoot (% ) a v = +1 r l to v dd /2 r l = 10k w r l = 1k w r l = 100k w 60 -40 100 1k 10k 100k 1m 10m m ax9003/m ax9004/m ax9005 op-am p gain and phase vs. frequency (with c load ) -20 max9000 toc23 frequency (hz) gain (db) 0 20 40 180 -180 -36 -72 -108 -144 108 72 144 36 0 phase (degrees) a v = +1000 c l = 270pf phase gain 0 -100 100 1k 10k 100k 1m 10m m ax9003/m ax9004/m ax9005 op-am p power-supply rejection vs. frequency -80 max9000 toc24 frequency (hz) power-supply rejection (db) -60 -40 -20 a v = +10 no load 0 10 20 30 40 50 0 400 500 200 300 100 600 700 800 900 1000 m ax9003/m ax9004/m ax9005 op-am p percent overshoot vs. load capacitance max9000 toc26 c load (pf) overshoot (% ) a v = +10 r l to v dd /2 r l = 10k w r l = 1k w r l = 100k w 1000 10 1 10 100 1k 10k 100k op-am p voltage noise density vs. frequency max9000 toc27 frequency (hz) voltage noise (nv/ ? hz) 100 30 300 _____________________________typic a l ope ra t ing cha r a c t e rist ic s (c ont inue d) (v dd = +5v, v ss = 0, v cm (op amp) = 0, shdn = v dd , cout = low, r l = , t a = +25c, unless otherwise noted.) downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 8 _______________________________________________________________________________________ _____________________________typic a l ope ra t ing cha r a c t e rist ic s (c ont inue d) (v dd = +5v, v ss = 0, v cm (op amp) = 0, shdn = v dd , cout = low, r l = , t a = +25c, unless otherwise noted.) 1 0.001 10 10k 1k 100k m ax9000/m ax9001/m ax9002 op-am p total harm onic distortion plus noise vs. frequency 0.01 0.1 max9000 toc28 frequency (hz) thd + noise (% ) 100 r l = 1k w a v = +1 v in = 2vp-p 500 khz lowpass filter r l to v dd /2 r l = 10k w r l = 100k w 0 0.05 0.10 0.15 0.20 0.25 4.0 4.4 4.5 4.2 4.3 4.1 4.6 4.7 4.8 4.9 5.0 m ax9000/m ax9001/m ax9002 op-am p total harm onic distortion plus noise vs. v aout max9000 toc29 v aout swing (vp-p) thd + noise (% ) a v = +1 v in = 10khz sine wave 500khz lowpass filter r l to v dd /2 r l = 10k w r l = 1k w r l = 100k w 1k 0.01 100 10m 10k 1m 100k 1k m ax9000/m ax9001/m ax9002 op-am p output im pedance vs. frequency 1 0.1 100 10 max9000 toc30 frequency (hz) output impedance ( w ) a v = +1 no load 1 0.01 10 1k 10k 100k m ax9003/m ax9004/m ax9005 op-am p total harm onic distortion plus noise vs. frequency 0.1 max9000 toc31 frequency (hz) thd + noise (% ) 100 a v = +10 v in = 200mvp-p 500khz lowpass filter r l to v dd /2 r l = 1k w r l = 100k w r l = 10k w v in v out r l 36k 4k -200 -150 -100 -50 0 50 100 150 200 2.5 3.5 3.0 4.0 4.5 5.0 5.5 change in com parator offset voltage (v os ) vs. supply voltage max9000 toc34 supply voltage (v) change in v os ( m v) 0 0.05 0.10 0.15 0.20 0.25 4.0 4.4 4.5 4.2 4.3 4.1 4.6 4.7 4.8 4.9 5.0 m ax9003/m ax9004/m ax9005 op-am p total harm onic distortion plus noise vs. v aout max9000 toc32 v aout swing (vp-p) thd + noise (% ) a v = +10 v in = 10khz sine wave 500khz lowpass filter r l to v dd /2 v in v out r l 36k 4k r l = 1k w r l = 100k w r l = 10k w 10k 0.1 100 10m 10k 1m 100k 1k m ax9003/m ax9004/m ax9005 op-am p output im pedance vs. frequency 10 1 1k 100 max9000 toc33 frequency (hz) output impedance ( w ) a v = +10 no load -200 -150 -100 -50 0 50 100 150 200 -40 0 -20 20 40 60 80 100 change in com parator offset voltage (v os ) vs. tem perature max9000 toc35 temperature (c) change in v os ( m v) 85 87 91 89 93 95 -40 0 -20 20 40 60 80 100 com parator com m on-m ode rejection ratio (cm rr) vs. tem perature max9000 toc36 temperature (c) cmrr (db) downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs _______________________________________________________________________________________ 9 2.0 2.3 2.9 2.6 3.2 3.5 -40 0 -20 20 40 60 80 100 com parator hysteresis vs. tem perature max9000 toc37 temperature (c) hysteresis (mv) 0 300 200 100 400 500 600 0 43 1 2 5 6 7 8 9 10 com parator output voltage swing high (v oh ) vs. source current max9000 toc38 source current (ma) v dd - v oh (mv) t a = +25c t a = +85c t a = -40c 0 300 200 100 400 500 600 0 43 1 2 5 6 7 8 9 10 com parator output voltage swing low (v ol ) vs. sink current max9000 toc39 sink current (ma) v ol (mv) t a = +85c t a = +25c t a = -40c 150 225 200 175 250 275 300 0 40 30 10 20 50 60 70 80 90 100 com parator propagation delay vs. input overdrive max9000 toc40 input overdrive (mv) propagation delay (ns) t pd- t pd+ 100 150 125 175 200 -40 0 20 -20 40 60 80 100 com parator propagation delay vs. tem perature max9000 toc43 temperature (c) propagation delay (ns) t pd- overdrive voltage = 50mv t pd+ 100 300 200 500 400 700 600 800 0 2000 4000 6000 8000 10,000 positive com parator propagation delay (t pd+ ) vs. load capacitance max9000 toc41 c load (pf) t pd+ (ns) overdrive = 5mv overdrive = 25mv overdrive = 100mv 100 300 200 500 400 700 600 800 0 2000 4000 6000 8000 10,000 negative com parator propagation delay (t pd- ) vs. load capacitance max9000 toc42 c load (pf) t pd - (ns) overdrive = 25mv overdrive = 5mv overdrive = 100mv 0 -100 1 1m 10k 100 100k 1k 10 v ref power-supply rejection vs. frequency -60 -80 -20 -40 max9000 toc44 frequency (hz) power-supply rejection (db) -2.0 -1.0 -1.5 0 -0.5 0.5 1.0 -40 20 40 -20 0 60 80 100 v ref output voltage change vs. tem perature max9000toc45 temperature (c) v ref output voltage change (mv) _____________________________typic a l ope ra t ing cha r a c t e rist ic s (c ont inue d) (v dd = +5v, v ss = 0, v cm (op amp) = 0, shdn = v dd , cout = low, r l = , t a = +25c, unless otherwise noted.) downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 10 ______________________________________________________________________________________ _____________________________typic a l ope ra t ing cha r a c t e rist ic s (c ont inue d) (v dd = +5v, v ss = 0, v cm (op amp) = 0, shdn = v dd , cout = low, r l = , t a = +25c, unless otherwise noted.) -2 -1 0 1 2 3 4 -2.0 -1.0 -1.5 -0.5 0 0.5 1.0 1.5 2.0 v ref output voltage change vs. load current max9000 toc46 load current (ma) v ref output voltage change (mv) sinking sourcing -100 -50 0 50 100 2.5 3.5 3.0 4.0 4.5 5.0 5.5 v ref output voltage change vs. supply voltage max9000 toc47 supply voltage (v) v ref output voltage change ( m v) 50 m s/div v ref load-transient response i out 2ma/div v ref 200mv/div +1ma -1ma max9000-toc48 5 m s/div v ref line-transient response v dd 500mv/div v ref 100mv/div 5.0v 4.5v max9000-toc49 500ns/div m ax9000/m ax9001/m ax9002 op-am p sm all-signal transient response v in 50mv/div v out 50mv/div max9000-toc52 a v = +1 no load 1sec/div v ref 0. 1hz to 10hz voltage noise 5 m v/div max9000-toc50 100ns/div -50mw +50mw com parator propagation delay v in+ 50mv/div v out 2v/div v in - = gnd no load t pd+ max9000-toc51 t pd- 1 m s/div m ax9000/m ax9001/m ax9002 op-am p sm all-signal transient response with c load v in 50mv/div v out 50mv/div max9000-toc53 a v = +1 c l = 270pf 500ns/div m ax9003/m ax9004/m ax9005 op-am p sm all-signal transient response v in 10mv/div v out 50mv/div max9000-toc54 a v = +10 no load downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs ______________________________________________________________________________________ 11 _____________________________typic a l ope ra t ing cha r a c t e rist ic s (c ont inue d) (v dd = +5v, v ss = 0, v cm (op amp) = 0, shdn = v dd , cout = low, r l = , t a = +25c, unless otherwise noted.) pin de sc ript ion shutdown logic input 2 1 1 m s/div m ax9003/m ax9004/m ax9005 op-am p sm all-signal transient response with c load v in 10mv/div v out 50mv/div max9000-toc55 a v = +1 c l = 270pf 2 m s/div m ax9000/m ax9001/m ax9002 op-am p large-signal transient response v in 5v/div 4v 0v v out 1v/div max9000-toc56 a v = +1 no load 500ns/div m ax9003/m ax9004/m ax9005 op-am p large-signal transient response v in 0.5v/div 5v 0v v out 1v/div max9000-toc57 a v = +10 no load max9000/ max9003 function max9002/ max9005 shdn 3 2 aout op-amp output 1 1 4 3 ain- 5 4 ain+ noninverting op-amp input 3 3 inverting op-amp input 2 2 6 5 v ss 9 6 ref internal reference output 5 10 7 cin- 11 8 cin+ noninverting comparator input 6 6 inverting comparator input 5 negative supply or ground 4 4 12 9 cout comparator output 7 7 13 10 v dd 1, 7, 8, 14 n.c. no connection. not internally connected. positive supply 8 8 name pin max9001/max9004 10 max 14 so downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 12 ______________________________________________________________________________________ _______________de t a ile d de sc ript ion the max9001Cmax9005 are combinations of a high- speed operational amplifier, a 185ns comparator, an d a 1%-accurate, 8ppm/c, 1.230v reference. the devices are offered in space-saving 8-pin and 10-pin max p ack- ages. the comparators inverting input is internall y con- nected to the reference output in the max9000/max90 03. the max9002/max9005 do not have an internal refer- ence, but the inverting input of the comparator is avail- able externally. the max9001/max9004 include both t he inverting input and the reference output. the max90 00/ max9001/max9003/max9004 typically consume only 410 a of quiescent current, while the max9002/ max9004 typically consume 340a. these low-power, rail-to-rail devices provide excellent ac and dc pe rfor- mance and are ideally suited to operate from a sing le supply. the max9001/max9004 feature a shutdown mode that sets the outputs in a high-impedance stat e and reduces the supply current to 2a, making these dev ices ideal for portable and battery-powered systems. op am p the op amps in the max9000/max9001/max9002 are unity-gain stable with a gain-bandwidth product of 1.25mhz and a slew rate of 0.85v/s. the amplifiers in the max9003/max9004/max9005 are stable at closed- loop gains greater than or equal to 10v/v, with a g ain- bandwidth product of 8mhz and a slew rate of 6.0v/ s. the common-mode input voltage range extends from 150mv below the negative rail to within 1.2v of the pos- itive rail. the amplifier output does not undergo p hase reversal when the common-mode input range is exceeded, and the input impedance is relatively con - stant for input voltages within both supply rails. the mos differential inputs of the amplifiers feature extremely high input impedance and ultra-low input bias currents. the cmos output stage achieves true rail-to-rail operation; the outputs swing to within a few millivolts of the supply rails, thus extending the dynamic range. a proprietary design achieves high open-loop gain, enabling these devices to operate at low quie s- cent currents yet maintain excellent dc and ac char - acteristics under various load conditions. these devices have been designed to maintain low offset v olt- age over the entire operating-temperature, common- mode, and supply-voltage ranges. max9000 max9003 op amp comp ref 1 2 3 4 8 7 6 5 aout ain- ain+ v ss v dd cout cin+ ref max9002 max9005 op amp comp 1 2 3 4 8 7 6 5 aout ain- ain+ v ss v dd cout cin+ cin- max9001 max9004 op amp comp ref 4m 3 4 5 6 12 11 10 9 aout ain- ain+ v ss v dd 2 13 shdn v dd cin+ cin- ref normal/shutdown control figure 1. max9000Cmax90005 functional diagrams downloaded from: http:///
com pa ra t or the common-mode input range extends from 150mv below the negative rail to within 1.1v of the posit ive rail. the bipolar differential inputs of the comparator f eature high input impedance and low input bias currents. t he comparators are designed to maintain low offset vol t- age over the entire operating-temperature, common- mode, and supply-voltage ranges. in the max9000/ max9003, the comparators inverting input is intern ally connected to the reference output. the cmos output stage achieves true rail-to-rail op era- tion; the outputs swing to within a few millivolts of the supply rails. the comparators propagation delay is 185ns and is a function of the overdrive (see typical operating characteristics ). ttl/cmos compatibility is maintained even with a 4ma output load. a propri- etary design of the output stage substantially redu ces the cross-conduction current during output transiti ons, thereby minimizing power-supply glitches typical of most comparators. in addition, the comparators 2m v of built-in hysteresis provides noise immunity and pre- vents unstable outputs even with slow-moving input signals. v olt a ge re fe re nc e the 1%-accurate, precision 1.230v internal bandgap reference in the max9000/max9001/max9003/ max9004 achieves an 8ppm/c temperature coefficient (tempco). the reference can sink or source 1ma of l oad current with excellent load regulation. the output typical- ly changes only 60v for a 3v change in input volta ge (line regulation). the reference is stable for capa citive loads up to 100nf. applic a t ions i nform a t ion the max9000Cmax9005 offer excellent performance and low power consumption, and are available in space-saving max packages. the following section provides some practical application guidelines. bypa ssing a nd la yout the max9000Cmax9005 operate from a +2.5v to +5.5v single supply or from 1.25v to 2.75v dual supplie s. (in the max9000/max9001/max9003/max9004, the reference voltage is referred to as v ss .). for single- supply operation, bypass the power supply with a 0.1 f capacitor. for dual supplies, bypass each supply to ground. bypass with capacitors as close as possi ble to the device to minimize lead inductance and noise . use a low-inductance ground plane if possible. a pr int- ed circuit board with a ground plane is recommended . avoid using wire-wrap boards, breadboards, or ic sockets. for heavy loads at the comparators and/or amplifiers output, add a 1f to 10f power-supply bypass capacitor. the device has a high degree of isolation between t he various blocks. to maintain isolation, careful layo ut is required. take special precautions to avoid crossin g signal traces, especially from the outputs to the i nputs. for sensitive applications, shielding might be requ ired. in addition, stray capacitance may affect the stabi lity and frequency response of the amplifier. decrease stray capacitance by minimizing lead lengths in the board layout, as well as placing external component s as close to the device as possible. op-am p fre que nc y st a bilit y driving large capacitive loads can cause instabilit y in most low-power, rail-to-rail output amplifiers. the se amplifiers are stable with capacitive loads up to 2 50pf in their minimum gain configuration. stability with hi gher capacitive loads can be improved by adding an isola tion resistor in series with the op-amp output, as shown in figure 2. this resis tor improves the circuits phase mar- gin by isolating the load capacitor from the amplif iers output. figures 3 and 4 show the response of the am pli- fier with and without an isolation resistor, respec tively. the total capacitance at the op amps inputs (input capacitance + stray capacitance) along with large-v alue feedback resistors can cause additional poles withi n the amplifiers bandwidth, thus degrading the phase mar gin. to compensate for this effect, place a 2pf to 10pf capacitor across the feedback resistor, as shown in figure 5. m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs ______________________________________________________________________________________ 13 max9000 max9001 max9002 max9003 max9004 max9005 r s r r r s c load c load figure 2. isolation resistors to drive capacitive loads downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 re fe re nc e bypa ssing while the internal reference is stable with capacit ive loads up to 100nf, it does not require an output ca paci- tor for stability. however, in applications where t he load or the supply could experience large step changes, an output capacitor reduces the amount of overshoot an d improves the circuits transient response. com pa ra t or i nput st a ge the comparators input bias current is typically 8n a. to reduce the offset error caused by the bias current flow- ing through the external source impedance, match th e effective impedance seen by each input. high source impedance together with the comparators input capa ci- tance can increase the propagation delay through th e comparator. the outputs do not undergo phase rever- sal when the input common-mode range is exceeded, and the input impedance is relatively constant for input voltages within both supply rails. com pa ra t or h yst e re sis built-in 2mv hysteresis improves the comparators noise immunity. it prevents unstable outputs with s low- moving or noisy input signals. if additional hyster esis is required, add positive feedback as shown in figure 6. this configuration increases the hysteresis band to desired levels, but also increases power consumptio n and slows down the output response. low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 14 ______________________________________________________________________________________ 2 m s/div v in 50mv/ div v out 50mv/ div max9000-fig03 figure 3. max9000/max9001/max9002 op-amp small-sig nal transient response with capacitive load (c l = 510pf) and isolation resistor (r iso = 91 ) figure 5. compensation for input capacitance r1 r2 2pf to 10pf aout ain+ 2 m s/div v in 50mv/ div v out 50mv/ div max9000-fig04 v dd = +1 c l = 510pf figure 4. max9000/max9001/max9002 op-amp small-sig nal transient response with capacitive load (c l = 510pf) and no isolation resistor ref r2 r1 cout v in figure 6. external hysteresis downloaded from: http:///
to add hysteresis, use the following procedure: step 1: the devices input bias current can be as high as 80na. to minimize error due to the input bias, choose a value for r2 of 100k (v ref / r2), which allows a current of 12.33a at the upper trip point . step 2: choose the width of the hysteresis band. in this example, choose 20mv for the added external hystere - sis (v ehyst = 20mv). total hysteresis = v ehyst + v ihyst = 24mv. r1 = r2 (v ehyst - 2v ihyst ) / (v dd + 2v ihyst ) where ihyst is the devices internal hysteresis. step 3: determine r1. if v dd = 5v, then r1 = 319 . step 4: check the hysteresis trip points. the following equation represents the upper trip point (v in(h) ): v in(h) = [(r1 + r2) / r2] (v ref + v ihyst ) = 1.238v the lower trip point is 24mv lower than upper trip point. v in(l ) = 1.238v - 0.024v = 1.214v. com pa ra t or propa ga t ion de la y the comparators propagation delay is a function of the input overdrive voltage. overdrive voltage is measu red from beyond the edge of the offset and hysteresis- determined trip points (see typical operating characteristics for a graph of propagation delay vs. input overdrive). high source impedance coupled wit h the comparators input capacitance increases the pr op- agation delay. large capacitive loads also increase the propagation delay. shut dow n ( s s h h d d n n ) shutdown is active-low enabled. the shdn input for the max9001/max9004 can be taken above the posi- tive supply without an increase in the shdn input cur- rent, allowing them to be driven from independent l ogic circuits powered from a different supply voltage. however, the logic threshold voltage requirements must be met for proper operation. if shdn is left unconnected, the device defaults to the enabled mod e through an internal 4m pull-up to v dd . if shdn is to be left unconnected, take proper care to ensure tha t no signals are coupled to this pin, as this may cause false triggering. in shutdown mode, all outputs are set to a high-imp ed- ance state and the supply current reduces to 2a. enable times for the op amp, comparator, and refer- ence are 2s, 100ns, and 16s, respectively. shutdo wn delay times for the op amp, comparator, and referen ce are 200ns, 100ns, and 1s, respectively (figure 7). ________________applic a t ion circ uit s ra dio re c e ive r for ala rm s a nd de t e c t ors figure 8s circuit is useful as a front end for rf alarms. an unshielded inductor is used with capacitors c1a, c1b, and c1c in a resonant circuit to provide frequ en- cy selectivity. the op amp from a max9003 amplifies the signal received. the comparator improves noise immunity, provides a signal-strength threshold, and translates the received signal into a pulse train. the tuned lc circuit in figure 8 is set for 300khz. the lay- out and routing of components for the amplifier sho uld be tight to minimize 60hz interference and crosstal k from the comparator. metal shielding is recommended to prevent rfi from the comparator or digital circu itry from exciting the receiving antenna. the transmitti ng m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r , h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs ______________________________________________________________________________________ 15 5 m s/div shdn 5v/div aout 2v/div cout 5v/div vref 1v/div max9000-fig07 a v = +1v/v, c ain+ = 2.5v, c cin+ = 2.5v figure 7. enable/disable response of op amp, compa rator, and reference to shdn ref 0.1 m f 0.1 m f l1 33 m h c1a 390pf 1 (2 p f c ) 2 c1b 0.01nf c1c 10m 5.1m 9.1k 10k 1.230v 20k v cc = 5v comp antenna amp layout-sensitive area, metal rfi shielding advised max9003 l1 x c1 = 50-100pf figure 8. radio receiver application downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 antenna can be long parallel wires spaced about 7.2 cm apart, with equal but opposite currents. radio wave s from this antenna are detectable when the receiver is brought within close proximity, but cancel out at g reater distances. i nfra re d re c e ive r front end for re m ot e cont rols a nd da t a link s the circuit in figure 9 uses the max9003 as a pin p ho- todiode preamplifier and discriminator for an infra red receiver. the op amp is configured as a delyiannis- noise and eliminates low-frequency interference fro m sunlight, fluorescent lights, etc. this circuit is applica- ble for tv remote controls and low-frequency data l inks up to 200kbps. carrier frequencies are limited to around 100khz, as in the example circuit. component layout and routing for the amplifier should be tigh t to reduce stray capacitance, 60hz interference, and rf i from the comparator. crosstalk from comparator edge s distorts the amplifier signal. to minimize this eff ect, add a lowpass rc filter to the connection from the refe rence to the op amps noninverting input. signa l condit ioning for incoming signals that require filtering, the in ternal amplifier provides an opportunity to create an acti ve fil- ter. this may be required for relatively high-speed sig- nals that require adequate filtering of high-speed carrier frequencies, harmonics, and external noise. in addition, the amplifier can be used to amplify the signal prior to digitizing it through the comparator to im prove the comparators overall output response and improv e its noise immunity. low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 16 ______________________________________________________________________________________ ref 0.1 m f 0.1 m f 1 2 p f c 100k 1.230v v cc = 5v comp amp c2 15pf, 5% 100khz, 5vp-p c1 150pf, 5% nec ph302b nec se307-c 51 w r1 a 49.9k 1% r1 b 4.99k 1% r2 100k, 1% layout-sensitive area max9003 r1 x c1 = r2 x c2 = 4.99k figure 9. infrared receiver application downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs ______________________________________________________________________________________ 17 pin configura t ions cin+ ref (cin-) v ss ( ) are for the max9002/max9005. 1 2 8 7 v dd cout ain- ain+ aout so/ m max top view 3 4 6 5 max9000 max9002 max9003 max9005 1 2 3 4 5 10 9 8 7 6 v dd cout cin+ cin- ain+ ain- aout shdn max9001 max9004 m max so ref v ss 14 13 12 11 10 9 8 1 2 3 4 5 6 7 n.c. v dd cout cin+ ain- aout shdn n.c. max9001 max9004 cin- ref n.c. n.c. v ss ain+ ain+ input ain- op amp comp ref cin+ aout ref 0.1 m f 1.230v v ss v dd r1 r2 1m cout max9000 max9003 typic a l ope ra t ing circ uit downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs 18 ______________________________________________________________________________________ or de ring i nform a t ion (c ont inue d) chip i nform a t ion transistor count: 283 part temp. range pin-package max9002 eua max9002esa -40c to +85c -40c to +85c 8 max 8 so max9003 eua max9003esa max9004 eub max9004esd -40c to +85c -40c to +85c 8 max 8 so -40c to +85c -40c to +85c 10 max 14 so max9005 eua max9005esa -40c to +85c -40c to +85c 8 max 8 so pa c k a ge i nform a t ion 8lumaxd.eps downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs ______________________________________________________________________________________ 19 pa c k a ge i nform a t ion (c ont inue d) 10lumaxb.eps downloaded from: http:///
m ax 9 0 0 0 Cm ax 9 0 0 5 low -pow e r, h igh-spe e d, single -supply op am p + com pa ra t or + re fe re nc e i cs maxim cannot assume responsibility for use of any c ircuitry other than circuitry entirely embodied in a maxim product. no circuit patent licenses are implied. maxim reserves the right to change the cir cuitry and specifications without notice at any tim e. 20 ____________________m a x im i nt e gra t e d produc t s, 1 2 0 sa n ga brie l drive , sunnyva le , ca 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0 ? 1998 maxim integrated products printed usa is a reg istered trademark of maxim integrated products. maxim cannot assume responsibility for use of any c ircuitry other than circuitry entirely embodied in a maxim product. no circuit patent licenses are implied. maxim reserves the right to change the cir cuitry and specifications without notice at any tim e. 20 ____________________m a x im i nt e gra t e d produc t s, 1 2 0 sa n ga brie l drive , sunnyva le , ca 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0 ? 1998 maxim integrated products printed usa is a reg istered trademark of maxim integrated products. pa c k a ge i nform a t ion (c ont inue d) soicn.eps downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of MAX9002EUAT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X